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Abstract 

A new m e t h o d  for the  t r ea tmen t  o f  s e c o n d a r y  ext inc-  
t ion  in po la r ized  n e u t r o n  dif f ract ion da ta  has  been  
deve loped .  As in p rev ious  models ,  the  Z a c h a r i a s e n  
so lu t ions  to the D a r w i n  in tens i ty  t rans fe r  equa t ions  
are used,  but  in this  case the ex t inc t ion  cor rec t ions  
are m a d e  on a p o i n t - b y - p o i n t  basis  across the rock ing  
curve a n d  the cor rec t ions  are d e t e r m i n e d  by the 
abso lu te  reflectivity at each  point .  There  are no adjus t -  
able  pa r ame te r s  (o ther  t h a n  background) .  Measure -  

* On leave from and now returned to the University of Missouri 
Research Reactor, Columbia, MO 65211, USA. 

men t  o f  the reflectivi ty also p rov ides  a s imple  test  for  
mul t ip le  scat ter ing,  s ince  the sum of  di f f racted and  
transmitted intensities should equal the direct-beam 
in tens i ty ,  correc ted  for  absorp t ion ,  if  no  mul t ip le  
sca t te r ing  is present .  The  presen t  m e t h o d  shou ld  give 
more  re l iable  results  t h a n  pa rame t r i zed  mode l s  where  
the co r re la t ion  be tween  the ex t inc t ion  and  o ther  para-  
meters ,  such  as the  scale factor  and  t e m p e r a t u r e  
factors,  are impor tan t .  

I. Introduction 

Scattering of polarized neutrons has provided nearly 
all of the information presently available about the 

0108-7673/84/010016-08501.50 © 1984 International Union of Crystallography 
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distribution of magnetization (spin) density in solids. 
In  these experiments, the flipping ratio, which is the 
ratio of neutron intensities scattered by a magnetized 
sample in a spin-up (+) and a spin-down ( - )  state, is 
measured for those reflections which have an observ- 
able magnetic contribution. From the flipping ratio 
the magnetic contribution to the intensity is calcu- 
lated, and those data are then Fourier transformed 
to give the magnetization density. This density, 
which is associated with the unpaired electrons, is 
generally diffuse (especially for the first transition 
series) and hence the transform is localized close to 
the origin and diminishes quite rapidly with increas- 
ing sin 0/h.  This leads to the principal limitation in 
the technique. Relatively few reflections contain sig- 
nificant magnetic intensities and thus all of the avail- 
able information about the spin density is contained 
in a small number of observations. It is necessary to 
measure these reflections as accurately as possible. 
With a good polarized beam spectrometer (incident 
flUX 105-106ncm -2 s -I) high statistical accuracy is 
generally easy to achieve, especially for low-order 
reflections which are most intense, but  systematic 
errors are much more difficult to account for and are 
more likely to influence these low-order reflections 
than higher-order reflections for which the intensity 
is lower, and flipping ratios are approaching 1. These 
errors include extinction, both primary and secon- 
dary, and multiple scattering, i.e. parasitic reflec- 
tions. 

A variety of techniques has been developed to 
correct for or to eliminate these phenomena. For 
example, measurements on successively thinner 
samples should, in principle, eliminate secondary 
extinction and multiple scattering, since both pro- 
cesses depend upon the reflectivity of the sample (see, 
for example, Mook, 1966). However, the signal-to- 
noise ratio gets worse as the reflectivity is decreased, 
and statistical accuracy suffers even when long count- 
ing times are used. Furthermore, the process of 
extrapolation is time consuming both in measuring 
time and in sample preparation. A further drawback 
is the problem of preparation of samples of different 
thickness which have equal bulk properties. The 
method may break down if primary extinction is 
present, since extinction lengths are generally less for 
strong reflections than the thinnest samples which 
can be prepared. A similar technique is to make 
measurements on a single sample as a function of 
wavelength (Bonnet, Delapalme, Becker & Fuess, 
1976). An extrapolation (vs h 2) to zero wavelength 
should be linear if only secondary extinction is pres- 
ent, and will have different behavior if primary extinc- 
tion is also present. The h = 0 value is taken as the 
extinction-free flipping ratio. However, only a limited 
wavelength range is available to the experimenter, 
and small systematic errors (such as multiple scatter- 
ing) may significantly alter the final result. A further 

drawback of the method is the need for a variable- 
wavelength polarized-beam spectrometer. 

Recently, two techniques have been introduced into 
the study of ferromagnetic alloys to eliminate the 
errors due to extinction. Firstly, samples are mechani- 
cally treated to remove primary extinction and the 
mosaic distribution is broadened so that the narrowest 
feature in the mosaic distribution is broader than the 
instrumental resolution, (Kwiatkowska, Maniawski, 
van Laar & Kaprzyk, 1982). Secondly, the flipping 
ratio R o b  s is measured across the rocking curve and 
not merely at the peak (R-on-rocking) and the curve 
is fitted on a point-by-point basis to a function in 
which the secondary extinction appears as a para- 
meter (van Laar, Maniawski & Kaprzyk, 1979). The 
fitting function is derived from Zachariasen's (1967) 
solution to the Darwin (1922) intensity transfer 
equations and should be excellent for weakly absorb- 
ing specimens. Unfortunately, the mechanical treat- 
ment of the sample increases the likelihood of 
multiple scattering and this, in turn, changes the 
measured flipping ratio at some or all points on the 
rocking curve, so that the fitting function no longer 
accurately describes the intensity distribution and 
unrealistic values for the extinction parameters and 
R may result. 

In this paper we present a new method for deter- 
mining secondary-extinction-free values of the flip- 
ping ratio. The method also provides a convenient 
test for the presence of multiple scattering which can 
be used to eliminate affected data. In the subsequent 
paper we present the results of application of this 
method to the polarized neutron scattering data on Ni. 

2. Extinction treatment 

Treatment of extinction in the new method, which 
we refer to as R-on-reflectivity is based on the same 
theoretical model as the R-on-rocking method of van 
Laar, Maniawski & Kaprzyk (1979), which will be 
referred to as LMK. This treatment uses the 
Zachariasen (1967) solution to the Darwin (1922) 
intensity transfer equations and is valid only for 
secondary extinction and small absorption. In addi- 
tion, it is assumed that the crystal has a uniform cross 
section o-(to) over the irradiated volume and that the 
mosaic structure is sufficiently broad that the 
geometrical conditions for diffraction are satisfied for 
all neutrons in the incident beam. This last require- 
ment is easily met for y-rays for which AA/A -~ 1 0  - 6  

(Schneider, 1974; Alkire & Yelon, 1981) if the angular 
divergence of the beam is controlled. It is not often 
met for X-rays or neutrons but with highly deformed 
specimens and good monochromators the conditions 
can be satisfied. Data which satisfy this requirement 
are then corrected on a point-by-point basis rather 
than on the basis of the integrated intensity as is most 
commonly done. 
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The important feature of the new method is the 
recognition that the extinction parameter G which 
appears in LMK is always multiplied by the diffracted 
current I and that the product G I  is the reflectivity. 
In LMK the solutions to the Darwin equations are 
examined for the case of a plane parallel plate in 
both Bragg and Laue geometry. These solutions were 
first given by Bacon & Lowde (1948) for the case of 
zero absorption. The solutions are combined for the 
two neutron spin states to give extinction-corrected 
flipping ratios. Using the definitions and symbols 
from LMK (which are those used in Becker & 
Coppens, 1974) the extinction parameter ~ is defined 
by the relationship 

=.~oWr (e),; (~), (1) 

where o'±(e) is the cross section (reflectivity per unit 
thickness) at position e, 5% is the incident flux and v 
is the (irradiated) sample volume. I~ is the diffracted- 
beam current. The superscripts + and - refer 
throughout to spin-up (+) and spin-down ( - )  
neutrons. The extinction parameter ~ is found by 
Zachariasen in symmetric Bragg geometry as 

q~±(e) = l/J1 +cr±(e)T], (2) 

where T is the effective plate thickness T/cos 0. In 
many treatments of extinction the expression for ~o 
is expanded in a power series in o-T and then the 
series is truncated, usually after the first-order term 
in o'T. For Bragg geometry the full series expansion 
of (2) is 

q~= 1 - o-±(e)¢ +[0- ' ( e )¢ ]2-  [o-±(e)T]3 + . . . .  
(3) 

The reflectivity r ± is the ratio of diffracted power to 
incident-beam power, corrected for absorption 
(assuming that the geometrical conditions for diffrac- 
tion are satisfied) and is equal to 

r ± ( e ) _  l ~ ( e ) ~  cr±(e) - ± - - -  T~ (e), (4) 
offoV 

where the expression on the right is derived from (1). 
Substituting cr±(e)T= r±(e) /~o±(e)  from (4) into (2) 
leads directly to the simplified expression 

q~+(e) = 1 - r±(e).  (5a) 

The cross section crT is calculated from (5a) and (2) 
and is given by 

cr(e) T =  r(e)  (5b) 
1 - r ( e ) "  

While this appears to be a trivial manipulation, it is 
quite useful, in that o-T can be directly extracted from 
a reflectivity measurement without passing through a 
series expansion. Since in scattering experiments 
reflectivities (or integrated reflectivities) are ulti- 
mately determined, this is an important consideration. 

Even in non-absolute measurements, the integrated 
reflectivity is fixed by the scale factor, although it may 
be strongly correlated with the extinction parameters 
fitted with a given model [which depends on the form 
of o'(e)]. Comparison of (3) and (5a) provides direct 
physical insight. The odd powers of o-T correspond 
to processes where the beam is scattered an odd 
number of times and is directed along the diffraction 
direction. The even powers correspond to processes 
in which the scattered beam is directed along the 
incident-beam direction. The sum of all powers except 
zero is the total removed from the primary beam and 
is equal to the reflectivity. In symmetrical Laue 
geometry the extinction parameter for a plane parallel 
plate is given by Zachariasen (1967) as 

1 - exp [-2cr±(e)T] 
~0±(e) - 2tr±(e)~ (6) 

Similar manipulations lead to 

and to 

~±(e) = -2r±(e)  (7a) 
l n [ 1 - 2 r ± ( e ) ]  

o.±(e) ~ =  - In  [1 - 2r±(e)] (7b) 
2 

This expression (7b) has been used by Schneider 
(1976) to correct for secondary extinction in y-ray 
data. 

It is interesting to examine in detail (5a) and (7a). 
In the limit of large r both expressions behave 
properly. For the Bragg case as r approaches l, ~0 -~ 0 
corresponding to infinite efT. In this case no intensity 
emerges from the rear of the crystal (in the transmitted 
beam). However, the intensity approaches this limit 
only very s lowly  as trT increases. For example, at 
r = 0.8, trT = 40, and at r = 0.9, trT = 90. In the Laue 
case ~ ~ 0 at r =  0.5, the well known result, and the 
intensity transfers between diffracted and transmitted 
beams which leave the crystal with equal strengths. 
In the Laue case the reflectivity limit is approached 
for much smaller values of o-T. For example, for 
r E 0.4 (80% of maximum), o-T = 0.8 and, at r = 0.495, 
o-T = 2-3. Adding thickness beyond this point has no 
observable effect. 

In the limit of r 41 it is immediately found by 
expansion of (7a) that the two cases are equivalent. 
For intermediate values of r it is somewhat surprising 
how slowly the two cases diverge. Table 1 gives the 
extinction parameter ~ for the symmetrical Laue and 
Bragg cases for 0 .00_  < r<_0.495. At r = 0 . 2  (7a) and 
(5a) disagree by only about 2%. For r_<0.1 the two 
expressions are likely to be indistinguishable within 
the statistical accuracy of an experiment. This is an 
important result since simple closed-form solutions 
to the Zachariasen model are not known for asym- 
metric geometries, although a series solution has been 
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Table 1. Values for the extinction parameter ~o as a 
function of  the reflectivity r, calculated for the sym- 
metrical Bragg case (with equation 5a) and the sym- 

metrical Laue case (with equation 7a) 

In the last co lumn the ratio o f  the values for the two cases is given. 

Reflectivity (r) ~(Bragg) ~(Laue)  

0-000 !.0 1.0 
0-005 0.9950 0-9950 
0.010 0.9900 0.9900 
0.015 0.9850 0-9849 
0-020 0.9800 0.9799 
0-030 0.9700 0.9697 
0.040 0.9600 0.9594 
0.050 0.9500 0-9491 
0.060 0.9400 0-9387 
0.070 0.9300 0-9282 
0.080 0.9200 0.9177 
0.090 0.9100 0.9070 
0.100 0.9000 0.8963 
0.120 0-8800 0.8745 
0.140 0.8600 0.8523 
0.160 0.8400 0.8297 
0.180 0-8200 0.8067 
0-200 0-8000 0.7830 
0-250 0-7500 0.7213 
0.300 0.7000 0-6548 
0.350 0.6500 0.5814 
0.400 0.6000 0-4971 
0.450 0-5500 0.3909 
0.495 0.5050 0.2150 

( Bragg) /~  (Lau e) 

1.00000 
1.00001 
1.00003 
1.00008 
1.00014 
1-00032 
.00058 
.00092 
.00136 
.00189 
.00253 
-00328 
-00415 
.00627 
.00898 
.01236 
.01654 
.02165 
.03972 
.06901 
.11797 
.20708 
.40714 

2.34910 

given by Sears (1977). There is no reason to suppose, 
however, that the geometrically intermediate cases 
are not also intermediate mathematically. It is likely 
that for r small (<0.1) the linear model of (Sa) is 
good enough to describe secondary extinction in all 
geometries. Series-expansion solutions to the 
Zachariasen equations in these geometries, truncated 
after the first-order term 1 - trT, will presumably also 
be valid if r -< 0.1 since trT is of order 0-11 at this point. 

The major advantage of the exact reflectivity for- 
mula compared to series expansions of (2) or (6) is 
seen in the plot of r as a function of trT for both 
geometries (Fig. 1). It is clear that the series 
expansions, truncated after the first-order term will 
be seriously in error (A~0/~p >__0.5) for r>_0.3, while 
(5a) or (7a) can be used for all values of r. 

Both DeMarco (1967) and Suortti (1982a, b) have 
used absolute reflectivity measurements in symmetric 
Laue geometry to correct for extinction. By this means 
they attempt to calculate absolute structure factors 
from individual rocking curves, measured with high 
statistical accuracy. Both workers, however, used 
series expansion solutions rather than the reflectivity 
formula of (7a). In the DeMarco work, the largest 
reflectivity was - 1 3 %  and the approximations were 
probably valid. In the Suortti study of Be, however, 
reflectivities appear to be sufficiently high that the 
approximations are questionable. In any case, with 
the availability of a simple closed-form expressions 
for this special geometry, there is no need to rely on 
any such approximate solutions. 

In polarized neutron diffraction it is not single 
intensities which are measured, but rather the ratio 
of the scattered intensities for spin-up and spin-down 
neutrons. Extinction affects both intensities although 
each to a different degree. Expressions (5) and (7) 
can be used individually to correct the intensity for 
each spin state, but it is possible to simplify further 
if the ratio is expressed as a function of r +, the 
reflectivity for the spin-up state. With (5) taken for 
each spin state and the substitution Re = I + / I -  made, 
the extinction-affected flipping ratio in symmetric 
Bragg geometry as a function of R, the true (kine- 
matic) flipping ratio, becomes 

Re(e)  = R +(1 - R)r+(e) (8a) 

o r  

R = R B ( e ) - r + ( e )  (8b) 
1 - r + ( e )  

Re is the experimental flipping ratio corrected for 
background and is derived from Robs = Io+bs/Iobs in 
the following way: 

Rn(e)r+(e) 
Robs- r+(e) + rBr.G(e)[RB(e)-- 1]" 

(9) 

aa 
d 

~0 
d 

C~ 

C5 

o.o ~.o ~.o ~.o ~.o ~.o 
GT 

Fig. I. Reflectivity v e r s u s  the effective cross section trT for Bragg 
and Laue geometries. 

The background, ranG, is assumed to be spin 
independent. 

It is convenient to define the reduced quantity 

R e -  1 
RR - -  R - 1 ' (10) 

which is a measure of the relative difference in true 
and extinction-affected magnetic structure factors. 
From (8) it is found quite simply that 

RR = 1 -- r+(e). (11) 

Thus, in Bragg geometry RR is a universal quantity 
depending only on the reflectivity r ÷. 



20 S E C O N D A R Y  E X T I N C T I O N  A N D  MULTIPLE SCATTERING.  I 

In symmetrical Laue geometry, the analogous 
expressions are derived from (7) and are given as 

2r*(e) 
Rs(e )  = 1 - [ 1 - 2 r + ( e ) ]  I/R (12a) 

In [1 - 2r+(e)] 
R = l n [ l _ 2 r + ( e ) / R B ( e ) ] .  (12b) 

No simple expression for RR is available in the Laue 
case, but in Fig. 2 R R is plotted for two values of R 
in the Laue geometry as well as for the Bragg case. 
The range of validity of the linear (in r ÷) model is 
easily seen here, as well as the fact that for Laue 
geometry R R may be taken as a universal quantity to 
r-~ 0.2, which is probably adequate in most cases. 

Fig. 3 shows a similar plot in terms of o-+T rather 
than r ÷. As expected, the dependence of RR on o'+T 
is quite weak for o-+T large and the use of this 
formulation is quite problematical. 

Although R-on-reflectivity is based on the same 
model as the R-on-rocking method, the advantage of 
the new method is quite apparent from Fig. 2. Experi- 
mental data across a rocking curve will typically range 
in reflectivity from 0 to -<0.1 and will have significant 
statistical error, as well as possible systematic errors 
such as multiple scattering etc. If r ÷ is known, the 
slope of the curve of Rn vs I is very well determined 
in spite of those errors. In principle, with the R-on- 
reflectivity method it is necessary to measure only 
one point on the rocking curve (normally the peak 
for statistical purposes) but in practice it is found to 
be advantageous to measure the full rocking curve. 
This will be discussed further in the next section. 

Measurement of the reflectivity is especially 
straightforward in large non-absorbing specimens in 
Laue geometry, since the transmitted and diffracted 
intensities Is can be summed to give the direct beam 
Io. For samples in symmetric Laue geometry the effect 
of absorption may be neglected since the path lengths 
for the diffracted and transmitted beams are equal 

and reflectivity may be defined as 

r =  IB/(IB + I T )  = IB/Io. (13) 

Thus the ideal geometry for the method is symmetric 
Laue, using an instrument with a X circle allowing 
the measurement of any reflection on the plane of a 
plate-like sample. In other geometries one must be 
concerned withthe situation in which the transmitted 
and diffracted beams have significantly different path 
lengths and absorptions. The effects of errors in the 
reflectivity determination due either to absorption or 
to errors in the determination of the direct beam are 
easily examined (assuming the validity of the 
Zachariasen solutions). Assuming the linear model 
(8b) the relative error in R~ as a function of the error 
in reflectivity Ar ÷ is found, to first order, to be 

A R  
R _ l - - ( A r + ) r  ÷. (14) 

If the reflectivity is approximately known, it is easy 
to define the accuracy needed in the direct-beam 
determination to match the required precision of an 
experiment. If reflectivity is kept small (r-<0.1) the 
demands on this determination are quite modest and 
the effects of absorption can usually be neglected for 
materials with moderate absorption (or absorption 
corrections made with good confidence). 

3. Multiple scattering 

Multiple scattering arises when two or more diffrac- 
tion spots (in addition to the origin) lie on the sphere 
of reflection (Fig. 4). The effects of such a situation 
have been described by Moon & Shull (1964) and we 
follow their description here. The intensity observed 
in the spot of interest Hol with reflectivity ro, is 
modified in several ways by the presence of an extra 
spot. The second spot Ho2 with reflectivity to2 removes 
primary-beam intensity, reducing the beam available 
to be diffracted by reflection Ho,. It also provides a 

q 

?o 

oi 

0.0 0,2 0.4 + 0.6 0.8 1.0 

F 

Fig. 2. The reduced quantity RR = (Ra- 1)/(R - l) for the Bragg 
case and for the Laue case for R = 1.1 and R = 10 versus the 
reflectivity. 

~ d  

~ d  

d 
0.0 LO 2.0 3.0 4.0 5.0 

Fig. 3. The same quantity R R a s  in Fig. 2 plotted as a function of 
t~T rather than r. 
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new channel into which the once-diffracted beam can 
be rediffracted with reflectivity rt2. These two pro- 
cesses reduce the observed intensity (Aufhellung). 
Opposing this is a process whereby the diffracted 
intensity increases through a second scattering of the 
second beam r02 × r2t, known as Umweganregung or 
detour radiation. The presence of these processes 
makes the measurement of r(e) unreliable.. To avoid 
this, usually rotations about the scattering vector (0 318 
scans) are performed to find regions where the peak 
intensity is not changing. These regions are assumed '~ 
to be free of multiple scattering and the intensity (or _* 
flipping ratio) is measured. However, in a crystal with ,,, 
broad mosaic, it may be quite difficult to define a t . . )  

suitable region for measurement. >- C )  

Furthermore, the change in reflectivity Arm to -- 310 
second order is given by (Schneider 1975): 

Z 

Arm ~( r12+ro2r2,~ o 
- -  - - r o 2 -  . ( 1 5 )  u 

ron rol / 10 
Since both Aufhellung and Umweganregung pro- 
cesses occur simultaneously Arm may be quite small 
for some cases where the individual terms in (15) are 
themselves non-negligible. This will normally occur 
for only one spin state (since ÷ rhk = rhk) and the flip- 
ping ratio will be incorrectly measured. If the @ scan 
looks at the variation in R rather than in r ÷ this may 0 -/. 
be avoided, but the sensitivity in this case is somewhat 
poorer. 

In the R-on-reflectivity method a simple and 
reliable test for multiple scattering, based on the 3oo 
conservation of neutrons, is possible. If only one 
reflection is on the sphere of reflection, then the sum 
of diffracted intensity IB and intensity transmitted _ 290 
through the sample 17-, corrected for absorption, will ,,? 
equal the intensity of the direct beam Io (Fig. 5a). If 
a second spot lies on the sphere of reflection some 
intensity will be directed into the directions Ho2 and ,,, 300 

....I 

Hi2 regardless of the relative strengths of the terms >._ 

in (15). Thus the sum IB + 17- < Io. If this is found to 
be true for some points along the rocking curve, those ~ 290 

I---- 

Z 

O 
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Fig. 4. The sphere of reflection showing two diffraction spots 1 
and 2 as well as the origin 0 in the sphere (after Moon & Shull, 
1964). 

data may be eliminated from the determination of R 
(Fig. 5b). 

This method may be used for any type of scattering 
experiment, X-ray, electrons, etc., providing absorp- 
tion corrections can be made. For polarized neutrons 

I I I I 

Io 
1111} [2111 

° ° ' , , ° . o • ° . . . . , , ° . . ' • . . . . °  
, , . ,  " ° • •  

• °  

I I I I 
IT 

o ° , ° ° o , ' ' % ° ° o ° ,  

° •  • 
• 0 • • 

° ° -  , ° 
• o• ° 

~ ° • "  

I 

IB 

I I I 

. . . . . . .  • t • t ! " ' • • . . . ¢ . . .  

-2 0 2 
MISSET (DEGREES) 

(") 

I I I I 

. . . . . . . . .  • ".... (11T)  [0221 
• , .  , , ,  

. , .  

° .  

I I I I 
I B  

. • 

. . . .  ° 0 . ' . :  J n J . . . .  

-L -2 0 2 
MISSET (DEGREES) 

(b) 
Fig. 5. Diffracted intensity /6, transmitted intensity IT and the 

total intensity Io(a) for (l l l) rocked around [211] showing no 
multiple scattering at the peak; (b) for (111) rocked around [022] 
showing multiple scattering across most of the rocking curve. 

I I I I 
. 

IT 
e e , , , o  

• . "'ee 
• • o . ' * o  



22 SECONDARY EXTINCTION AND MULTIPLE SCATTERING. I 

a further degree of sophistication is possible, since 
Is and 17- can be measured for both spin states. If 
only a single spot is on the sphere, the ratio 

RT=(I~ + I~r)/(I-s +IT) (16) 

will (ideally) equal 1. If multiple scattering is present, 
however, the reflectivities rh+k will differ from rhk and 
in general more intensity will be lost for one spin 
state than for the other and the ratio RT will become 
different from 1 (Fig. 6), and data can be rejected on 
the basis of this determination. 

While this test is exact for non-absorbing speci- 
mens, the effect of absorption o n  U T is easily seen. 
If the transmitted beam has transmission tt and the 
diffracted beam t2 (owing to differing path lengths), 
the ratio R T  is 

1 - r+ (1 -  t2/h) 
R T  ~-- 

1 - ( r ÷ / R ) ( l - t 2 / h )  
+ 

r 
- - - - -  1 - - ~ - ( R  - 1)(1 - t 2 / t , ) ,  (17)  

where r ÷ is the reflectivity for spin-up neutrons. Thus, 
if absorption is moderate and the geometry is not 
extremely asymmetric (t2 = tt), or if the reflectivity r ÷ 
is small, then absorption may be neglected in testing 
for multiple scattering. Nevertheless, the ideal 
geometry is symmetric Laue, for in that case t2 = tt. 

The error in flipping ratio caused by an unobserved 
multiple scattering process with reflectivity rtm is 
found from (15) and will be of order 

A R =  r ,m(1-  R-~t~) (18a) 
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Fig. 6. RT = ( I F  +I~-)/(I~ +IT)  for the two cases plotted in Fig. 
5. RT clearly shows the multiple scattering effects which are also 
seen in Fig. 5. 

AR r~m Rt,,, - 1 
R - 1 - R ~ m  R - 1  ' (18b) 

where Rt,,, is the flipping ratio for reflection Hi,,,. 
Equations (18a) and (18b) can be used to define the 
statistical precision needed in the measurement of RT 
to define multiple-scattering-free regions. In most 
practical c a s e s  ~ 1 0  6 summed counts should be 
sufficient to ensure results within the desired experi- 
mental accuracy. Since the experimental data have 
statistical errors, an acceptance range 

1 - e  <- RT  <- 1 + e  (19)  

can be chosen as a criterion for the rejection of data 
experiencing multiple scattering. 

4. D i s c u s s i o n  

Treatment of secondary extinction within the 
framework of the Zachariasen formalism has usually 
used integrated intensity data collected for many 
refections (weak and strong). Connection is made 
with the reflecting power and kinematical cross sec- 
tions through a series of steps. These include determi- 
nation of a scale factor, assumption of the form and 
homogeneity of the mosaic distribution function, as 
well as a series of mathematical approximations 
needed to arrive at integral solutions to the 
Zachariasen model. The method we propose avoids 
all of these problems, but assumes instead that the 
geometrical condition for diffraction is satisfied 
equally for all parts of the divergent incident beam 
at any point on the rocking curve, and that the reflec- 
tivity measured at a given point is the true, and not 
an average, reflectivity. This implies the mosaic to be 
broad relative to the beam divergence. While this is 
not normally the case for as-grown specimens and 
normally prepared beams, many materials can be 
treated to broaden their mosaic. It will also be 
necessary in most cases to reduce the beam diver- 
gence, which will, in turn, increase the measuring 
times, but with modern high-flux neutron and X-ray 
sources this appears to be a reasonable prospect. In 
general, it will be necessary also to test the validity 
of the assumption of 'broad mosaic' by means of 
y-ray diffraction to characterize the mosaic 
structure. 

Other experimenters have made measurements on 
an absolute scale, but re-examination of the 
Zachariasen solutions has shown that formulation of 
the extinction problem in terms of reflectivity rather 
than as a function of the cross section leads to simple 
closed-form solutions for both symmetric Bragg and 
Laue cases for plane parallel plates, and gives con- 
fidence that a linear model can be used for asymmetric 
geometries provided that reflectivity is not too large 
(<0.1). The simplicity of the result is remarkable and 
it is quite surprising that only limited attention has 



W. B. YELON, B. VAN LAAR, S. KAPRZYK AND F. MANIAWSKI 23 

been given to reflectivity measurements. Treatment 
of flipping-ratio data within this method is par- 
ticularly attractive since errors in Io affect R in a 
weaker way than in the case of absolute structure- 
factor measurements and direct-beam measurements 
also provide a simple and reliable test for multiple 
scattering at the same time that the flipping ratio is 
determined. Primary extinction is not treated by this 
method, but meeting the resolution requirements pre- 
viously mentioned usually requires alteration of 
sample microstructure in such a way that primary 
extinction is likely to be quite small. The effect of 
absorption has essentially been neglected here, and 
it has been pointed out by several authors (Werner, 
1974; Borie, 1982) that the separation of diffraction 
and absorption in the treatment by Zachariasen is 
essentially incorrect, and that the approach is only 
valid for small absorption in the general case. In 
symmetric Laue geometry the Zachariasen solutions 
may be used, however, since diffracted and trans- 
mitted beams (including multiply scattered beams) 
have the same path lengths and absorptions. This is 
clearly the preferred geometry, but several specimens 
will normally be needed to measure enough zones of 
interest. It would seem, however, that for experiments 
in which high accuracy is essential, such as spin- 
density determination, and where the cost of measur- 
ing is high (any neutron or synchrotron study), the 

value of such a set of specimens would be quite high 
compared to the cost of their preparation. 
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